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This paper inciudes the predominant inertia terms in an analysis of
hydrostatic thrust bearings. The influence of centripetal accelerations
on the distribution of pressure is found to be considerable. For parallel-
surface bearings of constant film thickness the inertia effects are found
to be detrimental to load capacity. In o stepped bearing however,
correct location of the step can result in an increased load capacity at
speed. No increase in load capacity con result from inertia effects
if the step radius is less than 0.4508 of the bearing radius. A con-
sequence of the inclusion of inertia terms in the analysis is the existence
of a velocity component in the axial direction. Even in the parallel-
surface bearing considered a fluid element is found to move towards
the rotating surface as it spirals through the clearance space.
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Inertia Effects in Hydrostatic Thrust Bearings

D. DOWSON

NOMENCLATURE

h = minimum oil film thickness

Re = Reynolds numper (P g% %)
7,9,z = cylindrical co-urdinates

ro = radius of lubricant supply hole
r; = radius of step

R = outslde radius of bearing

r' = radius ratio (r/R)

P = total load capacity

Q = volume flow rate

/ 2 J“_Z\
S = 1nertila parameter 2 P 5:—-—,
20 Py ,

u,?;w = velocity components inr, 6, z
Jirectlons
U,V,W = representatlve velocitles

'u Ll Y
ut, ! = velocity ratios (I_I-' %n ;)

p = pressure
Po = representative pressure
p' = pressure ratio (p/p,)
p = mean pressure across the oil film
o = film thickness ratio,
film thickness in recess
minimum film thickness

1

P density of lubricant
Ui viscosity of lubricant
5l = rotational speed

INTRODUCTION

One of the customary assumptions made in the
theory of lubrication 1is that the influence of
inertia terms in the equations of motion 18 neg-
ligible compared with the effect of the viscous
terms. This assumption 1s clearly valld 1f the
appropriate Reynolds number Re<K1l. Brand (;)1
carried out an order-of-magnitude analysis of two
of the equations of motion involved in thrust
bearings and he concluded that the Reynolds-num-
ber condition could be written in the form

he
ph -1
1 ynderlined numbers in parentheses designate
References at the end of the paper.

An 1nvestigation of the relative importance
of pressures produced by centrifugal inertial ef-
fects and normal hydrostatlic action 1in tapered
thrust pads was carried out by Kingsbury (2) on
hils electrolytic tank. For the bearing geomstry
consldered Kingsbury found that the ratlo of the
two pressures was about 1/800 at a rotational
speed of 1000 rpm.

In recent years the question of inertia ef-
fects has agaln been ralsed owing to the increase
in bearing operating speeds. Most of the work
has been concerned with Jjournal bearings employ-
ing 1iquid and gaseous lubricants. By averaging
the inertla terms across the oll film Osterle,
Chou, and Saibel (3) were able to calculate the
nodified pressures in journal bearings. They
found that even at the limiting condition for
stable laminer flow inertia effects would only
modify the pressures by about 4 per cent.

The investigations by Kingsbury and Osterle,
Chou and Salbel were concerned with inertla pro-
duced modifications to hydrodynamic pressure dis-
tributions which are in turn speed dependent. For
this reason the percentage change in pressure due
to lnertia effects may still be small at high
speeds whilst the actual modification to the
pressure may be considerable.

Shaw and Strang (4) have suggested that in-
ertia-induced pressures may account for the ob-
served lmprovement in the performance of parallel
surface bearings at high speed.

This paper 1s concerned with inertia effects
in hydrostatlic thrust bearings. In thils type of
bearing the pressure distribution predicted in
the absence of inertia effects 1s independent of
the surface speeds of the bearing components.
Consequently the relative importance of inertia
effects can be mich greater than in aydrodynamic
bearings.

GENERAL ANALYSIS

If body forces are neglected the Navier-
Stokes equation of motion for an incompressible
isoviscous fluild in cylindrical co-ordinates take
the form,

HB-g] = e[ Ton-ay
I[B-:**,f “#-*q[?‘vth}%—%‘l
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For problems possessing axlal symmetry the
steady state representation of the above equation
is,

f[u%u_.nuh - ] —--—115_+1[ l_l‘+_1_lu.+3u_\.}

r b )3 -3

’n[ukq—u%’ ng'_'\_?] — 2[&-&1.& + .5:!?—.\2.]

3 WoT e gt
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The contlnulty equation for an incompressible
fluld in cylindrical co-ordinates is,

!ﬁ*# i..n+ L3>+ Y =0

T 8 L}

For axlal symmetry and the steady state this

reduces to,
L \,.*] + lﬂ —
L 2 s & o

Now the equations can be written in dimen-
sionless form by writing,

ww—uU o - o'V ©w - W

1]
where the representatlive quantities U, R, pg»
and so on, are selected such that the primed va-

rlables are always 1.
The equations now become

f[ 'h f\'l! 'b-— ‘“]

r=R a,- é’“

Vo'l t WV o' 'y
f’ %il.&: - q:ﬁ?-»%?.gz ]
- Wo's i b0+ (m)NY v
K‘ 'ﬂ. r ) [\ 8’1 +'*

i (1)
The primed quantities are all of the same
order of magnitude, and if only the predominant

viscous terms are retailned the equations of mo-
tion are

. h .
v A LA S R ' 3;3
R.[ Wrue u.,._»] -3 (2)
)30 'I b"
Re[o'do'+ W R do'] == —hh.Jp 420
et U A 33 J}' ""

where the Reynolds number

R,-ﬂ":_ﬁ(%)
It 1s convenlent to define the Reynolds number
in this way since the appropriate selection of U
enables the analysls to be applled to radial flow
between a palr of statlonary surfaces or to the
combined radial and circumferential flow between
a palr of rotating surfaces. With the equatilons
of motlon in the foregoing form the order of mag-
nitude of the inertla terms can readily be esti-
mated.

In the case of stationary surfaces and pure
radial flow the inertla and viscous terms wlll be
of equal importance when Re = 1. In thls case
the representative radlal veloclty U could be
taken as Q/2w rgh.

For rotating surfaces the last inertla term
in the first equatlon of motion may well predom-
inate, and in thils case inertia and viscous terms
will be equally important when Re (v/u)2 = 1. It
should be noted that if R JLis taken as the rep-
resentative velocity in the radlal and circumfer-
entlal directlons thils condition reduces to
Brand's result of

pak=

In general the Reynolds number Re will be
considerably less than unlty in hydrostatlc
thrust bearings since U is usually small and h
<<R. Also since W/U = 0(h/R) from equation (1)
all the inertia terms in the second and third
equations of motlon can be neglected, Similarly
two inertia terms in the first equation of motion
can be discounted and we finally obtain

T - )I.
pE= gy
0 = 7 o {3)

s
o --—&*, ;’m
8 iy
The second of equations (3) can be integrated

directly, and with che boundary conditions z = O,
¥=0and z = h, ¥=r flwe find,
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If the third equation of motion 1s integrated
twice we obtain

I?l} - yw +Az+ B (5)

where A and B are functions of r only. When z =
0 the integral in equation 5 and W are both
zero, and hence B = 0, Since 4w 1s also zero
when z = h Wwe have,

h
L d 'y
L[ty = F
(]
where P can be considered as the mean pressure
across the oil film. Clearly p is a function of
r only.
Oon differentiating equation (5) with respect

to 2 and introduclng the above expression for A
Wwe obtaln

b= ¥ (6)

From equation (6) it will be noted that the
pressure at any point in the oll film will differ
from the mean pressure by an amount which 1s de-
pendent upon the local axial veloclty gradlent.
For radial flow between stationery parallel sur-
faces dw/dz 1s zero everywhere, but 1t will be
shown that this 1is not true if 1lnertla effects
are considered in the case of rotating surfaces.

If the result expressed in equation 4 is in-
troduced into the first of equations 3 and the
expression for p 1n equation 6 is used to elim-
inate dp/dr, we find,

‘7[‘“' ’,‘“]+ pea’ (@)

The second viscous term in this equation can
be written in terms of u and r from the contin-
uity equation to give,

) S S I W
r 0 3
r 1[ Y )v( l)]+l‘ ()

In this form 1t can be seen that the first
viseous term 1s of order (R/h)2 times the second,
and since R>> h the second term may be neglected.
Thus

b= g Ay e pratyy)t (7)
3r U h
The derivation of this equation does not preclude
the existance of pressure gradients and hence ve-
locities in the axial direction.
Since ¥ 1is a function of r only equation (7)

can be integrated directly with respect to z.
When the boundary conditlons z = 0, u = 0 and

s

Fig.1 Hydrostatic step bearing

Z = h, u = 0 are Introduced the rollowlng expres-
sion for the radial velocity is obtained

w— —3(h-2) 3 . fnﬂk-g) (8)
1z or 129 [
Now since ¢ = 0 when z = h we see from the
continulty equation that,

L}

L. Lr.l}=o

and rnence by substituting for u from equation (&)
"L(f!l.f)—_s_ffﬂf )
dr dr s

The general form of the pressure distribution

which is obtalned from equation (9) before bound-
ary condltions are applled 1s,

- e
} =2 r o+ Cﬂz¢f +D (10)

where C and D are integratlon constants.

The volume rate of flow of lubricant through
the bearing can be obtained by evaluating the
integral,

Q= zfrk[.-r“!}

It 1s found that Q 1s related to C by the expres-
slon

R = -xbe (11)
¢y
SOLUTION FOR THE STEPPED PARALLEL SURPACE
HYDROSTATIC THRUST EEARING

Pressure Distribution

For a bearing of the form shown 1n Fig.l we
need expressions for the pressure distribution
on 2ither slde of the s cep.
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Fig.2 Pressure distribution in a stationary hydrostatic step
.bearing. ry'= 0.05

Let

- [ RS
t=zpraralypred a>On
and

'f - _a;; ff"_fll'i- C‘&,er +D, RrRBpT

For the boundary values let §T = Dy When r = rq
and p = 0 when r = R. For the first condition
Po Will be the supply pressure if ry 1s small
compared with R.

The additional conditions needed to determine
Ci» Co» D and D, are obtained from the require-
ments of flow and pressure continuity at the
step. The expressions obtained are,

¢ = ;-[‘ + 5('-""‘)]
oy wegy ek
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Fig. 3(a) Pressure distribution in a hydrostatic step
bearing. o« =5. 15' = 0.05. r1'= 0,5
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Fig. 3(b) Pressure distribution in a constant film thickness
hydrostatic bearing. o= 1. r '=0.05

The pressure dlstributions take the form,
3o gt (ax) Dy
(-(’-l)l’.q' Y
+ SHAN 2 'y (-5 hyr'm - by 2]
(«3-1) Bpemi's oy o™

fl>">fo

= & Ao, < (2l
L («*) ’7.4'.'-0 Qg.f.'
+ S[_-x'(!-r.")l,,,' = (=) {(«t) -‘-,.".'-r ’7."-1 )

(«3-1) 'pﬂc“’t"" ‘g.fo'
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Load Capacity
The load carrying capacity of the bearing P

can be evaluated from equation (12) and the re-
lationship,
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Fig.4 Variation of load parameter with step position. a =
5. 1,'=0.05

L ) L
P ==t ;, rovw ff*if + aw[ffif.
v n
The result 1is,

f = («2a)(nwt) = P (1-w't)

*R % z[(‘h)j,.r.l* L’c"o']

+s{(«%) Lyrs by, ﬂ'}(lfd'h(r.':r.")u'(l—:"n ) (13)
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Iubricant Flow Rate

The volume rate of the flow of lubricant
through the bearing can be found by substituting
the appropriate value of C in equation (11).

&ﬂj_ — --('[l-o- 5(»—4'.")] (14)
x i (‘L‘)HJ""' -th'i'

CALCULATIONS

The pressure dlstributions represented by
equation {12) clearly contain two components.
The first group of terms in each equation gilves
the pressure distribution which is obtained when
the bearing surfaces are stationary, whilst the
second group represents the modification to the
pressure caused by rotation.

In Pig.2 the pressure distributions for a
stationary bearing are shown for various film
thickness ratios «. The bearing consldered has
a lubricant supply hole of radius 1/20 of the
bearing radius. The solution for paraliel sur-
faces with a constant fllm thickness (o = 1) re=-
duces to

| i
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Fig.5 Contours of ry' for constant load capacity at all speeds
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Fig. 6 Variation of flow rate parameter

with inertia parameter. rq‘ = 0. 05.
1'=0.5

The pressure distributions as modified by the
rotation of one of the bearing components have
been calculated for a step bearing (€= 5) and a
constant film thickness bearing (a« = 1). These
results are shown in Fig.3(a) and Fig.3(b), re-
spectively.

The way 1in which the load carrying capacity
varles with the speed of rotation is dependent
upon the radius of the step for a bearing of giv-
en lubricant supply hole radius. Values of P/
n'RZE have been computed from equation (13) for
a film thickness ratio of 5. The values obtained
ar? plotted against the step location parameter
ry for various values of the inertia parameter
S in Fig.4. The relationship between ?/ﬂnzig and
S 18 linear for a bearing of glven geometry.

Both bearings have been assumed to have a lubrl-
cant supply hole of radius 1/20 of the bearing
radius. Por the stationary constant film thick-
ness bearing equation (13) becomes
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This result has been presented by Fuller (5).

It can be seen from Fig.4 that i1f the step
1s located such that rl' = 0.465 the load capac~
ity of the bearing is independent of speed. £
r1' < 0.465 the load capaclty Yill decrease as
the speed 1lncreases, but 1If ry > 0.%465 the re-
verse effect occurs. The value of rl' required
to maintain a constant load capacity at all
speeds 1§ dependent upon the film t?ickness ratic
oland r, . These null values of r) are shown
for varlous values of o and ro| in Flg.5.

The flow rate parameter (6% Q/n h3 p,) has
been computed from equation (1l4). The results
are plotted against the inertia parameter S for
various values of & in Fig.6. The particular
values of ro' and rl' selected for this caicula~
tion were again 0.05 and 0.5 respectively.

DISCUSSION OF RESULTS

Most hydrostatic thrust bearings are of the
step kind shown in Fig.l. The radius of the re~
cess 1s often appreclable to enable the static
supply pressure to separate the bearing elements.
For such a bearing it is customary to assume that
the pressure at the lubricant supply hole extends
to the step. The validity of thils assumption is
confirmed by the results presented in Fig.2. Even
from a modest film~thickness ratio of 5 the pres-
sure at the step only falls below the supply
pressure by about 2.6 per cent for the geometry
considered.

Perhaps the outstanding feature of the pres~
sure curves shown in Figs.3(a) and 3(b) is the
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Fig.8 Axial velocity distribution ir. a hydrostatic thrust
bearing

considerable modification which is 1ntroduced b,
1n?rtia effects. For example, when ro' = 0.05,
r; = 0.5 and €= 5 a value of unlty for S causes
the pressure at the step to rise by 22.8 per

cent above the pressure obtalned with stationary
surfaces. A value of unity for the inertia pa-
rameter can be obtained in a 6 in. radius bearing
suppllied with o011 at a pressure of 100 psil at a
rotational speed of about 4500 rpm.

Although the pressure rise in the region of
the step 1s conslderable for the bearing geometr;
on which Fig.3{a) is based, the load carrying
capaclity 1s not greatly affected. The reason for
this 1s that the pressure falls slightly below
the values obtained in the absence of rotation
at a radius ratlo greater than about 0.68. These
reduced pressures do of course act over a large
proportion of the bearing area.

For a constant film thickness bearing (= 1)
rotation always lowers the pressures. An Ilnter-

esting feature of Fig.3(b) is that the pressure
in the fluid film falls below the amblent pres-
sure at comparatively small values of the inertia
parameter. If these sub-ambient pressures exist
in the fluld then the load carrying capaclty of
such a bearing can rapldly be reduced to zero.
The pressure may fall below the saturation pres-
sure to a small extent without the fluld ruptur-
ing due to the emergence of alr from solutilon.
However:due to cavitatlon the sub~ambient pres-
sures whicnh would be needed to reduce the load
capaclty to zero are unlikely to exist. If the
fluld film 15 ruptured by cavitation and the
pressure maintalned above amblent the load will
be reduced but it will never become zZero. An
analysis including this effect would have to em=-
ploy an appropriate cavitation boundary condl-
tion. It should also be recalled that isothermal
conditions have been assumed in the analysis.
The pressure distribution and load capaclty may




be affected 1f thermal effects influence the
fluld properties,

Even 1s sub-amblent pressures are presumed
to exist to such an extent that the load carrying
capacity of the bearing consldered in Fig.3(b) is
reduced to zero, the radial veloclity of the fluid
is not reversed. It is instructive to see the
velocity profiles at various radlal positions
with and without rotation in the constant film
thickness bearing.

The velocity distribution can be obtalned by
substituting dp/d7 from equation (12) into equa-

tion (8). The resulting expression can be writ-
ten as,

O 1 %) 'y ot

T + 3[;(;’--){110 -7} } ST a’l‘i‘)f'] (15)
L "%gfo' ) f'-L"f.' ?

Now with ro' = 0.05 zero load capacity would
be achieved with S = 0.4986. The veloclty pro-
flles under these conditions are shown in Fig.T.
As expected the greatest distortion of the para-
bolic profile assoclated with stationary surfaces
occurs at large values of the radlus. In this
reglon the radial velocity of the fluld 1ls de-
creased near the stationary surface. However
even atr! = 1 the velocity 1s never directed in-
wards,

Apart from the radial and circumferential ve-
locity components there is a veloclty in thc ax-
ial z-direction when one of the hearling elements
1s rotating. In lubrication theory the exlstence
of fluid velocities across the oll film 1s nore
mally assoclated with problems in which at least
one of the bounding sollds has a veloclty in the
z=directlon. However in this case transverse ve-
locities exist even though the surfaces are par-
allel and the film thickness constant.

Tre concinulty equation can be written as,

do = - dur
)3_ r v

When equation (15) is multiplied by r and
differentliated with respect to r the first term
on the right-hand side vanishes. Thus 1if the sec-
ond term 1s also reduced to zero by consldering
statlonary surfaces we see that duydz = 0. Since
@« 1s zero at the boundaries 1t is also zero
everywhere. Hence for a static parallel surface
thrust bearing the flow 1s entirely radial.

With rotation the second term does not vanish
and hence we find

IO ,k’_ﬂ.‘ [Sé't— 9}“* +;'J
Y 30-2
Thus ?

P R

,k’JtF

It will be noted that this expression 1s in-
dependent of the radlus., The form of w 1s shown
in Fig.8. Owing to the axial velocity components
a fluld element will move towards the moving sur-
face as 1t spirals through the bearing.

Returning now to the stepped bearing we see
from Fig.4 that the nature of the change in load
carrying capaclity 1s dependent upon the location
of the step. Since 1t 1s desirable to ensure
that the load capacity of any particular bearing
does not decrease as the speed rises a more com-
prehensive dlagram has been presented in Fig.5.
The notable result which 1s obtained from the
analysls on which Fig.5 is based is that inertila
effects cannot Increase the load carrying capac-
ity of any stepped bearing of the form considered
if the step 1s located at a radius less than
0.4508 of the bearing radius.

For a bearing having a value of ro' of 0.0125
an increase in load capacity willl occur as the
speed rises 1f the step location rl' and film
thickness ratio o are selected such that the
point lles In the shaded part of Fig.5. Outsilde
this reglon the load capaclty will be reduced.
For different values of ro' the shaded portion of
Fig.5 should be extended to the approprilate con-
tour. Although the contours shown 1n Flg.5 ex-
tend to large values of ro' it should be remem-
bered that the analysis assumes the exlstence of
a constant piressure out to rf = To'+ This condi-
tion 1s unlikely to hold at large values of ryt.
Along each contour the load capaclty 1s constant
at all speeds and 1t 1s given by the relation-
ship.

"
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In the region to the left of the boundary
shown in Fig.5 the load capaclty is always re-
duced as the speed increases. Thls result does
not depend on the radius of the lubricant supply
hole.

Most step bearings operate with a film-thick-
ness ratio greater than 5 and 1t 1s clear from
Figs.4 and 5 that the greatest benefit can be ob-
talned from inertia effects only if rl' 1s made
consliderably greater than 0.,5. The practical
limitation on this requirement is of course that
the static load of the rotating machinery has to
be carrled on the annular bearing surface, The
theoretical iimitation can be seen in Fig.4. As
r! approaches unlty the load capacity starts to
fall back towards the constant film thickness
value. The theoretical optimum for ry' will have
to be determined with regard to ro'.

All the results have so far been discussed
with a constant supply pressure in mind. The
bearing performance cannot however be divorced

7
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from the lubricant supply arrangement. Without
detailed consideration of any particular lubri-
cant supply system 1t 1s possible to see how in-
ertia effects may be responsible for a reduction
in o1l film thickness as the speed of a hydro-
static bearing 18 increased.

Consider a step bearing with the step located
in a position which, at high speed, results in a
decreased load capacity based on a constant sup-
ply pressure. A3 the speed increases equilibrium
of the loaded rotating member will be lost if the
supply pressure remains constant. The rotating
member will therefore move towards the stationary
bearing surface. Th: decrease in film thickness
caused by this movement will reduce the flow of
lubricant through the bearing and 1if the oil pump
dellvery pressure remains constant this will en-

able the pressure at entry to the bearing to rise.

This process will continue until the increased
supply pressure can restore the initial load car-~
rying capacity, but the bearing surfaces will now
be separated by a smaller gap. This argument can
also be applied to show that correct positioning
of the step will produce an increase in film
thickness as the speed increases.

The analysis has shown that inertia consid-

erations can considerably influence the predic-
tion of hydrostatic thrust bearing performance.
The inertia effects are detrimental in the case
of constant thickness bearings but they may be
advantageous in the case of a stepped bearing if
che step 1s correctiy located.
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